Dr Saima Nadeem Assist Professor Pathology

NEVOCELLULAR NEVI MELANOMA

Learning objectives

 List types of Nevocellular Nevi (Congenital Nevus, blue nevus, Spitz's Nevus, halo nevus, dysplastic nevus) along with their clinical significance.

 Describe the clinical and morphological features of dysplastic nevi

 Describe malignant melanoma with respect to frequent site of origin, clinical and morphological feature

Types of nevi

- Congenital nevus.
- Acquired nevus.
- Blue nevus.
- Spitz nevus.
- Halo nevus.
- Dysplastic nevus.

Melanocytic Nevus/Nevocellular Nevus

- Common benign neoplasm.
- Subtypes are distinguished on the basis of clinical and histological features.
- Acquired melanocytic nevi are the most common type.

Congenital melanocytic naevi

Small congenital naevus

Medium congenital naevus

Giant naevus

Small congenital naevus is < 1.5 cm diameter. Medium congenital naevi are 1.5–19.9 cm diameter. A large or giant congenital melanocytic naevus is ≥ 20 cm Hairy congenital naevus

Hairy congenital naevi grow thick long hairs.

The Pathological classification of Melanocytic Naevi

relates to where naevus cells are found in the skin.

Junctional nevus

Intradermal nevus

Compound nevus

Combined naevus

A junctional naevus has groups or nests of naevus cells at the junction of the epidermis and the dermis. A flat mole. A dermal or intradermal naev us has naevus cell nests in the dermis. A papule, plaque or nodule with a pedunculated, pa pillomatous (Unna naevus) or smooth surface (Miescher naevus). A compound naevus has nests of naevus cells at the epidermaldermal junction as well as within the dermis. A central raised area surrounded by a flat patch. A combined naevus has two distinct types of mole within the same lesion – usually blue naevus and compound naevus.

IIA2. Natural history of a melanocytic nevus (non-dysplastic)

	Ti	me>	
Normal: one	Junctional	Compound	Intradermal nevus: deeper
melanocyte	nevus: basal	nevus: nests in	melanocytes are smaller (D)
per 10	epidermal	epidermis &	or grow in cords/spindle cells
keratinocytes	nests	dermis	(E)

Dermatoscopic patterns of melanocytic naevi

Reticular naevus	Globular naevus	Blue naevus	Starburst naevus
Reticular naevus reveals a lattice of	Globular naevus characteristically	The blue naevus is a uniform structure	Starburst naevus reveals radial lines
intersecting brown	shows aggregated	less lesion, steel	around the
lines.	structures.		lesion.

Reticular pattern Junctional nests of melanocytes

Junctional nevus Lentiginous nevus

Globular pattern Junctional and dermal large nests of melanocytes

> Congenital nevus Compound nevus Dermal nevus

Starburst pattern Confluent junctional melanocytes

> Spitz nevus Reed nevus

Blue pattern Dermal dendritic melanocytes

Blue nevus

Stratum corneum

Epidermis

Dermis

Blue nevus

Dermatoscopic patterns of melanocytic naevi cont

Site-related	Site-related	Naevus with special features	Unclassifiable
naevus: facial	naevus:acral		naevus
Facial naevi reveal pseudo network around hair follicles	Acral naevi (these are on palms and soles) tend to be made up of parallel lines.	Naevi with special features include eczematised naevus , irritated naevi and <u>halo</u> <u>naevi</u> .	The unclassifiable naevus doesn't have any of the other patterns.

halo naevus

- A halo naevus is an otherwise normal<u>mole</u> with a white ring, or halo, around it. The central dark brown naevus fades from dark brown to light brown to pink, eventually disappearing completely.
- Halo naevus is also known as:
- Halo melanocytic naevus
- Halo mole
- Regressing naevus

- The white halo is usually about 0.5–1.0 cm wide and is symmetrical (round or oval in shape). The halos develop at intervals around one or several moles, but not around all of them.
- There are four stages of a halo naevus. It may take several years to complete the cycle. Multiple halo naevi can be at different stages.
- Stage 1: A rim of pale skin surrounds a mole
- Stage 2: The mole may become pinker or less pigmented, and fades away
- Stage 3: A circúlar or oval area of depigmentation persists
- Stage 4: The affected skin gradually returns to its normal color

Halo Nevus

 The nevus architecture is obscured by a dense lymphocytic infiltrate

 Lymphocytes infiltrate among the dermal nevus cells, which eventually degenerate and disappear

Spitz nevus

- Spitz nevus, also known as Spitz tumor or spindle and epithelioid cell nevus, is an usually acquired, benign melanocytic lesion and one of the main differential diagnosis of melanoma.
- Most Spitz nevi are predominantly compound, although junctional and intradermal lesions are also observed.
- composed of large and/or spindle-shaped melanocytes, usually in nests. The nests are composed of an admixture of spindle cells and/or epithelioid cells, although frequently, the spindle-shaped cells predominate

Pathogenesis.

- Acquired mutations in NRAS and BRAF.
- Oncogene induced senescence prevents malignant transformation.
- RAS/BRAF causes limited period of proliferation followed by permanent growth arrest by p16/INK4a which is a potent inhibitor of several cyclin dependant kinases.
- This protective response is lost in melanomas and some precursor lesions.

Morphology

- Tan to brown and uniformly pigmented.
- Small <6mm upto 20 cm</p>
- Flat macules or elevated papules with well defined, rounded borders.
- Become prominent during pregnancy.
 Series of morphological changes are seen over time.
- 1) Junctional nevi
- 2) Compound nevi
- 3) Intradermal nevi

Clinical features

- Cosmetic concern.
- May cause irritation.
- May mimic melanoma requiring surgical removal.

CHAPTER 25 The Skin

Table 25-2 Representative Variant Forms of Melanocytic Nevi

Iaure 20-2 Representative	Clinical Significance		
Nevus Variant	Diagnostic Architectural Features	Cytologic Features	Present at birth; large variants have
Congenital nevus	Deep dermal and sometimes subcutaneous growth around adnexa, neurovascular	Identical to ordinary acquired nevi	increased melanoma risk
	bundles, and blood vessel walls	us us deadritic boovily nigmented	Black-blue nodule; often confused with
Blue nevus	Non-nested dermal infiltration, often with associated fibrosis	Highly dendrille, neavily pignetter	melanoma clinically
		nevus cens	Common in children; red-pink nodule; offen
Spindle and epithelioid	Fascicular growth	Large, plump cells with pink-blue cytoplasm; fusiform cells	confused with hemangioma clinically
cell lievus (opliz lievus)		Use lite ardinany acquired nevi	Host immune response against nevus cells
Halo nevus	Lymphocytic infiltration surrounding nevus cells	Identical to ordinary acquired not	and surrounding normal melanocytes
			Detential marker or precursor of melanom
Dysplastic nevus	Coalescent intraepidermal nests	Cytologic atypia	Polential marker of producor of melanoing

Dysplastic Nevi

- May be sporadic or familial.
- Familial identify cases with increased risk of melanoma.
- Activating RAS or BRAF mutations are common.

Morphology

- Dysplastic nevi are larger than MN.
- More than 5mm across.
- Multiple often in hundreds.
- Flat macules to raised plaques with pebbly surface.
- Variable pigmentation and irregular borders.

Morphology cont

- Histologically compound nevi exhibiting cytological and architectural evidence of abnormal growth.
- Bridging.
- Lentiginous hyperplasia.
- Cytological atypia.
- Lymphocytic infiltrate.
- Melanin incontinence.
- Linear fibrosis

Dysplastic 2

Dysplastic 3

Dysplastic Back 1

Dysplastic Back 2

Dysplastic Back 3

ATYPICAL MOLES

- Irregular borders or unusual shape
- > 6 mm diameter
- Asymmetry
- 2+ shades of colour
- Flat and bumpy surface

Miiskin © 2019 Learn more at miiskin.com

auluuluulu,

Dysplastic Nevus:

Pigmented raised lesion with central darker shade (arrow).
 Junctional cluster of irregular melanocytes (arrow)

Clinical features

- It occurs on areas not exposed to sun as well as on sun exposed areas.
- Familial dysplastic nevus syndrome is strongly associated with melanoma with lifetime risk of 100%.
- In sporadic cases individuals with 10 or more dysplastic nevi are at increase risk.

Melanoma.

- Melanoma is less common but much more deadly than Basal or Squamous cell carcinoma.
- The incidence of these lesions has increased dramatically over the past several decades, at least in part as a result of increasing sun exposure and/or higher detection rates resulting from vigorous surveillance.

PATHOGENESIS

- sunlight plays an important role in the development of melanoma.
 - Intense intermittent exposure at an early age is particularly harmful.
 - Recent "deep sequencing" studies have confirmed that tumor genomes contain thousands of acquired mutations, most bearing a signature consistent with UV-induced DNA damage.
 - Sunlight, however, is not the only predisposing factor; hereditary predisposition also plays a role.

MUTATIONS in sun exposed

- CDKN2A locus on 9p21 present in 40% of familial cases.
- Encodes p16 and p14 & p15.
- Initiating event is activating mutation in BRAF or RAS.
- Mutations that activate expression of telomerase serve as an antidote to senescence.
- With additional mutations inCDKN2A and continuous exposure to UV light ----tumor progression.
- Additional mutation inTP53 and PTEN ---metastasis.
- Aneuploidy and genomic copy number alteration adds to genetic heterogeneity of tumor.

Mutations in non sun exposed sites

- Initiating mutation is gain of function mutation in KIT.
- Melanoma in uvea of eye show mutations that activate GTP binding proteins GNAQ and GNA11.

To summarize

telomerase

• TERT encodes catalytic unit of telomerase

PHASES OF MELANOMA

Radial growth

- Lateral expansion of melanocytes along the dermoepidermal junction.
- Progresses to phase of melanoma in situ marked by radial growth within the epidermis.
- No invasion or metastasis

Vertical growth

- Tumor grows downward in to deeper dermis as an expansile mass lacking maturation.
- Nodule appears in previously flat lesion.
- Metastatic potential develops.

nietustude nietudoma nietuteta Etolation

Stage	Benign Nevus	Dysplastic Nevus	Radial-Growth Phase	Vertical-Growth Phase	Metastatic Melanoma
Epidermis		228			
Basement		eres the		R R	
Dermis				-30,55	Metastasis to lung, liver, or brain
Biologic Events	Benign Limited growth	Premalignant Lesions may regress Random atypia	Decreased differentiation Unlimited hyperplasia Cannot grow in soft agar Clonal proliferation	Crosses basement membrane Grows in soft agar Forms tumor	Dissociates from primary tumor Grows at distant sites
	BRAF mutation -	CDKN2A loss			
		PTEN loss			
Molecular Lesions			Increased CD1	E-cadherin loss N-cadherin expression αVβ3 integrin expression MMP-2 expression	
				Reduced TRPM1	Absent TRPM1

Arlo et al., NEJM 2006

MORPHOLOGY

- Striking variations in pigmentation including shades of black, brown, red, dark blue, and gray.
- The **borders are irregular** and often "notched."
- Microscopically, malignant cells grow as poorly formed nests or as individual cells at all levels of the epidermis (pagetoid spread) and in expansile dermal nodules; these constitute the radial and vertical growth phases.
- superficial spreading melanomas are often associated with a brisk lymphocytic infiltrate a feature that may reflect a host response to tumor-specific antigens.

Four Types of Melanoma

Superficial spreading Typically begins as dark spot that is asymmetric, has irregular borders, or changes color Nodular melanoma Starts as a raised spot—dark or light—and grows vertically

Acral lentiginous Appears as irregular growth or patch on palms of hands or soles o<mark>f feet. Change</mark>s color and size

Lentigo maligna Starts as an irregularly-shaped tan or brown spot, growing slowly over years. It may become raised or change colors

MORPHOLOGY

- The nature and extent of the vertical growth phase determine the biologic behavior of melanomas.
- Individual melanoma cells usually are considerably larger than nevus cells. They have large nuclei with irregular contours, chromatin that is characteristically clumped at the periphery of the nuclear membrane, and prominent "cherry red" eosinophilic nucleoli.
- Immunohistochemical stains (HMB-45) can be helpful in identifying metastatic deposits.

Clinical features

- most of these lesions arise in the skin, they also may involve the oral and anogenital mucosal surfaces, the esophagus, the meninges, and the eye.
- Melanoma of the skin usually is asymptomatic, although pruritus may be an early manifestation.
- The most important clinical sign is a change in the color or size of a pigmented lesion.

clinical warning signs

- I. Rapid enlargement of a preexisting nevus
- Itching or pain in a lesion
- 3. Development of a new pigmented lesion during adult life
- 4. Irregularity of the borders of a pigmented lesion
- 5. Variegation of color within a pigmented lesion

Clinical features cont

- The probability of metastasis is predicted by measuring the depth of invasion in millimeters of the vertical growth phase nodule from the top of the granular cell layer of the overlying epidermis (Breslow thickness).
 - Metastasis risk also is increased in tumors with a high mitotic rate and in those that fail to induce a local immune response.

Thickness at excision Probability of 5 year survival

<1mm	>95%
1-2mm	90%
2-4mm	63-67%%
>4mm	45%

Table 1. Five-year survival rates predictedby the Breslow thickness

Staging

- Breslow Staging:
 - Classifies tumor according to thickness in millimeters
 - Inverse correlation between thickness and survival
- Clark level of Invasion:
 - Classifies based on level of invasion into the histologic layer of the skin
 - I-V
- Independent Prognostic Factors:
 - Tumor stage, ulceration, nodal status, distant metastasis

≤ 0.75 mm → 89% 0.76-1.49 mm → 75% 1.50-2.49 mm → 58% 2.50-3.99 mm → 46% >4 mm → 25%

Level I: melanoma confined to the epidermis (melanoma in situ)

Level II: Invasion into the papillary dermis (through basement membrane)

Level III: Invasion to the junction of the papillary and reticular dermis

Level IV: Invasion into the reticular dermis Level V: Invasion into the subcutaneous fat

Breslow Thickness

Imeasured in millimeters) Widely used and regarded as a good indicator of outcome.

Clark Level

(indicates the anatomical level of invasion)

Measure from the granular layer of the epidermis (or the base of the superficial ulceration) down to the deepest point that the turnour has invaded in the tissues.

www.TipsInPlasticSurperv.com

Level 1 In site melanorsa S.c. is remains with the optimises Level 2 Insector INTO the papillary dermis Level 4 Insector INTO the reticular dermis Level 5 Insector INTO the reticular dermis Level 5 Insector into the subcutaneous tissues 0:2012 Jane Kernett Oxford

Clinical features cont

- •When metastases occur, they involve not only regional lymph nodes but also liver, lungs, brain, and virtually any other site that can be seeded hematogenously.
- •Sentinel lymph node biopsy (of the first draining node of a primary melanoma) at the time of surgery provides additional information on biologic aggressiveness

Clinical features cont

- In some cases, metastases may appear for the first time many years after complete surgical excision of the primary tumor, suggesting a long phase of dormancy, during which time the tumor may be held in check by the host immune response.
- Recognition of the likely role of the host immune response has led to therapeutic trials of immunomodulators.

 Some impressive responses in patients with advanced melanoma have been seen, especially to antibodies that block endogenous inhibitors of immune responses such as CTLA-4 and PD-1, and thus "release the brakes" on host antitumor immunity.

Classification	Thickness	Ulceration/Mitoses
T1	\leq 1.00 mm	a: no ulceration, mitoses $< 1/\text{mm}^2$
		b: ulceration and/or mitoses $\geq 1/mm^2$
T2	1.01-2.00 mm	a: without ulceration
		b: with ulceration
T3	2.01-4.00 mm	a: without ulceration
		b: with ulceration
T 4	> 4.00 mm	a: without ulceration
		b: with ulceration
Classification	No. of Positive Nodes	Nodal Burden
NO	0	
N1	1	a: micrometastases
		b: macrometastases
N2	2-3	a: micrometastases
		b: macrometastases
		c: in-transit metastases or satellite lesions without
		metastatic nodes
N3	4+	Or in-transit metastases or satellite lesions
		with any number of metastatic nodes
Classification	Site	Serum LDH
M0	None	NA
M1	Distant skin, subcutaneous, or nodes	Normal
M2	Lung	Normal
M3	All other visceral metastases	Elevated

*Source: Ref. 6.

Prognostic factors

- Tumor depth.
- No of mitosis.
- Evidence of tumor regression.
- Ulceration of skin.
- Presence and number of tumor infiltrating lymphocytes.
- Gender.
- Location.

Summary

Melanoma: Pathogenesis and clinical findings

Authors

Ryan T. Lewinson

