Computer Fundamentals

Lecture \# 5:
Microprocessor

Today's Objectives:

To study Microprocessor and its various Subsystems

Microprocessor:

- The Brain of the computer
- Silicon Chip (IC)
- Latest Pentium-4 has around 125 million transistors
- Performs Billions of Instructions per second
- Combines with other devices such as Memory and I/O to form a "Microprocessor system"

Microprocessor Models:

The "Calculator" Model
Should be able to

- Take Data
- Decode
- Execute
- Give Results

Components Required for the

 "Calculator" Model- Control Unit; for decoding signals and activate the devices (memories, buses, registers) in a proper sequence
- Arithmetic Unit; to perform mathematical calculations

Machine Cycle

- The series of steps taken by the CPU to execute an instruction is called 'Machine Cycle'
- Two smaller Cycles
- Instruction Cycle
- Execution Cycle
- Instruction Cycle

1. Fetching: Fetching a command from memory
2. Decoding: Map the command to Instructions

Machine Cycle

Execution Cycle

1. Executing: CPU converts the instructions into microcode and carries them out
2. Storing: (Optional) The CPU stores the result somewhere in the memory

Components of a Microprocessor

- Memory; stores data and instructions
- Bus Interface Unit; transfers data in and out of the Processor, instructions into the Processor
- Instruction Decoder; Decodes Instructions
- Arithmetic and Logic Unit; Performs Math, Comparisons and Logical Operations on Integers
- Control Unit; Controls and Manages all the Processing

The Memory Bottleneck:

- Accessing RAM for Data/Instructions is slow
- Solution:
- Registers attached to the ALU (for data currently in use)
- Cache Memory (for most frequently used data)
- Internal Cache (on processor chip)
- Instruction Cache
- Data Cache
- External Cache (on motherboard)

The "Real Numbers" Processing:

- Real Numbers
- Use in Computing
- Floating Point Unit; Processes the Real Numbers faster than an ALU

The Final Picture:

The Instruction Set:

- A Microprocessor's Language; Low-Level, Single Step Instructions
- Also called Program code, Binary code or Machine code
- Difficult to change after implementation
- Architecture dependant
- Design Issues:
- Silicon Real Estate
- Cost
- Expandability
- Legacy Support
- Complexity
- Power Consumption
- Deign Types
- CISC (Complex Instruction Set Computer)
- RISC (Reduced Instruction Set Computer)

Microcontroller
(A Microprocessor system):

- Basic components of a microprocessor system combined on a single chip
- The CPU core
- RAM and ROM
- I/O ports (Parallel \& Serial)
- Timers and Interrupts
- Analogue to Digital Converter (ADC), etc

Microcontrollers

- Used in Autonomous Systems
- ovens, ATMs, vehicles
- Advantage:
- Compact integrated design on single chip
- Reduced interface

A Single Chip Microcontroller

Microprocessor, Yesterday and Today:

- Busicom's Desk Calculators
- 1971, Intel's $1^{\text {st }}$ Microprocessor-4004
- 2250 Transistors
- $740 \mathrm{KHz}, 60,000 \mathrm{Op} / \mathrm{sec}$
- 16 pins
- 10 Microns
- As Powerful as ENIAC
- 2001, Intel's P4 - Today's Processor
- 55 Million Transistors
- 32-bit Word size
- 2.2 GHz
- 2 ALUs
- 128 bit FPU
- 0.13 Micron

Moore's Law:

- Presented by Gordon Moore, 1965, Intel Corp.
- No. of Transistors on the Processor Chip Will Double in 18 months

Better Future Processors?

- Capabilities should Include:
- Higher Clock Frequency
- Greater Word Width
\square More Functioning Units
- Better Caching Algorithm
- Right Cache Size
\square What else?

