Computer Fundamentals

Lecture # 5: Microprocessor

Today's Objectives:

To study Microprocessor and its various Subsystems

```
Microprocessor:
```

- The Brain of the computer
- Silicon Chip (IC)
- Latest Pentium-4 has around 125 million transistors
- Performs Billions of Instructions per second
- Combines with other devices such as Memory and I/O to form a <u>"Microprocessor system"</u>

Microprocessor Models:

The <u>"Calculator</u>" Model

- Should be able to
 - Take Data
 - Decode
 - Execute
 - Give Results

Components Required for the "Calculator" Model

- Control Unit; for decoding signals and activate the devices (memories, buses, registers) in a proper sequence
- Arithmetic Unit; to perform mathematical calculations

Machine Cycle

- The series of steps taken by the CPU to execute an instruction is called 'Machine Cycle'
 - Two smaller Cycles
 - Instruction Cycle
 - Execution Cycle
- Instruction Cycle
 - 1. Fetching: Fetching a command from memory
 - 2. Decoding: Map the command to Instructions

Machine Cycle

Execution Cycle

- 1. Executing: CPU converts the instructions into microcode and carries them out
- 2. Storing: (Optional) The CPU stores the result somewhere in the memory

Components of a Microprocessor

- Memory; stores data and instructions
- Bus Interface Unit; transfers data in and out of the Processor, instructions into the Processor
- Instruction Decoder; Decodes Instructions
- Arithmetic and Logic Unit: Performs Math, Comparisons and Logical Operations on Integers
- Control Unit; Controls and Manages all the Processing

The Memory Bottleneck:

- Accessing RAM for Data/Instructions is slow
- Solution:
 - Registers attached to the ALU (for data currently in use)
 - Cache Memory (for most frequently used data)
 - Internal Cache (on processor chip)
 - Instruction Cache
 - Data Cache
 - External Cache (on motherboard)

The "Real Numbers" Processing:

- Real Numbers
- Use in Computing
- Floating Point Unit; Processes the Real Numbers faster than an ALU

The Final Picture:

The Instruction Set:

- A Microprocessor's Language; Low-Level, Single Step Instructions
- Also called Program code, Binary code or Machine code
- Difficult to change after implementation
- Architecture dependant
- Design Issues:
 - Silicon Real Estate
 - Cost
 - Expandability
 - Legacy Support
 - Complexity
 - Power Consumption
- Deign Types
 - CISC (Complex Instruction Set Computer)
 - RISC (Reduced Instruction Set Computer)

Microcontroller

(A Microprocessor system):

- Basic components of a microprocessor system combined on a single chip
 - The CPU core
 - RAM and ROM
 - I/O ports (Parallel & Serial)
 - Timers and Interrupts
 - Analogue to Digital Converter (ADC), etc

Microcontrollers

- Used in Autonomous Systems
 ovens, ATMs, vehicles
- Advantage:
 - Compact integrated design on single chip
 - Reduced interface

A Single Chip Microcontroller

Microprocessor, Yesterday and Today:

- Busicom's Desk Calculators
- 1971, Intel's 1st Microprocessor-4004
 - 2250 Transistors
 - 740 KHz, 60,000 Op/sec
 - 16 pins
 - 10 Microns
 - As Powerful as ENIAC
- 2001, Intel's P4 Today's Processor
 - 55 Million Transistors
 - 32-bit Word size
 - 2.2 GHz
 - 2 ALUs
 - 128 bit FPU
 - 0.13 Micron

Moore's Law:

- Presented by Gordon Moore, 1965, Intel Corp.
- No. of Transistors on the Processor Chip Will Double in 18 months

Better Future Processors?

- Capabilities should Include:
 - Higher Clock Frequency
 - Greater Word Width
 - More Functioning Units
 - Better Caching Algorithm
 - Right Cache Size
 - What else?