Computer Fundamentals

Lecture # 4: Number systems and Logical Operations

Today's Aim

- Learning about the different Numbering Systems
- Learning Conversion Techniques among the different Number Systems
- Studying the Important Logical Operations

Number SenseCounting

History of Number Systems:

- Quipu of the Inca Umpire
- Fractions in Ancient Egypt
- The Mayan Number System
- The Egyptian Number System
- The Greek Number System
- The Babylonian Number System

Main Numbering Systems:

- Decimal
- Binary
- Hexadecimal

Decimal Number System:

- Base-10 system: 0,1,2,3,4,5,6,7,8,9
- Positional Number System i.e., every place has its own weight

Examples:

- $\square 123.64 = 1^*10^2 + 2^*10^1 + 3^*10^0 + 6^*10^{-1} + 4^*10^{-2}$
- $0.456 = 4*10^{-1} + 5*10^{-2} + 6*10^{-3}$

Binary Number System:

- Base-2 system : 0,1
- Examples:
 - **1011001**
- Used in all Digital Devices
- Why?

Hexadecimal Number System:

- Base-16 Number System : 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Used for compact representation of binary numbers. How?

Conversion:

Binary to Decimal:

$$1011_{2} = 1^{*} 2^{0} + 1^{*} 2^{1} + 0^{*} 2^{2} + 1^{*} 2^{3}$$
$$= 1 + 2 + 0 + 8 = 11$$

Decimal to Binary: $5_{10} = 101_2$

2	5 -	1
2	2 -	0
	1	

Conversion (continued):

Hexadecimal to decimal: $DEAD_{16} = ?$

Decimal to hexadecimal: $207_{10} = ?$

Data Organization:

- Bits (Binary Digits)
- Nibbles = 4 bits
- Bytes = 8 bits
- Word = 16 bits

- The value of a Boolean expression may either be 'true' or 'false', represented by a '1' or a '0'
- There are three basic Boolean expressions:
 - AND
 - OR
 - NOT
- Other logic operations (derived from these three) include 'NAND', 'NOR', 'XOR' etc.

AND

- 'if any input is low (0), output is low' or 'output is high (1) only if all the inputs are high'
- Two or more inputs, only one output

OR

- 'if any input is high, output is high' or 'output is low only if all the inputs are low'
- Two or more inputs, only one output

NOT

- 'output is complement of the input'
- Single input, single output

Truth table

- Contains all the possible input values and their outputs
- 2ⁿ entries of a truth table show all the possible input combinations (n = number of inputs)
- Boolean expression
 - Consists of Boolean variables
 - Another way to represent the input-output relationship

Logical Diagram (circuit)

- Representation in the form of a circuit
- All the inputs and outputs can have only two values, '0' or '1'

Logical Diagram

 $\frac{\text{Boolean Equation}}{\mathcal{Z} = \mathcal{X} \cdot \mathcal{Y}}$

Logical Diagram

$$z = x + y$$

Logical NOT:

Logical Diagram

$$y = x'$$

Logical Diagram

$$z = x \cdot y$$

Logical Diagram

$$z = x + y$$

Logical Diagram

Boolean Equation

 $z = x \oplus y$

X	У	Z
0	0	1
0	1	0
1	0	0
1	1	1

Logical Diagram

Boolean Equation

 $Z = X \odot Y$

Today we Learnt:

- About Number Systems
- Conversion among different number systems
- Binary Logic