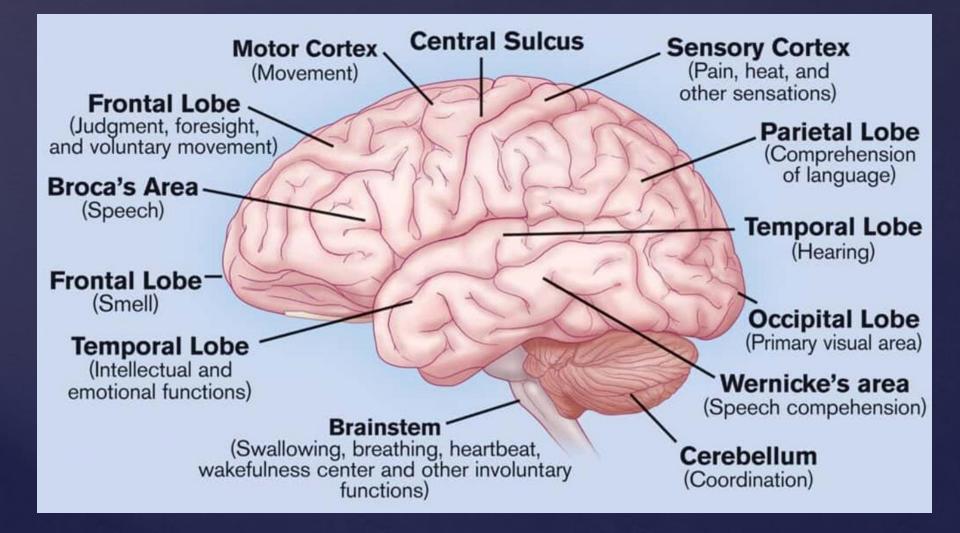


"MASTERING OTHERS IS STRENGTH; MASTERING YOURSELF IS TRUE POWER." - LAO TZU


Reticular Formation Dr Zubia Shah

Learning Objectives

- Enumerate the involuntary functions of brain
- Describe Bulboreticular facilitatory area.
- Explain continuous stimulation from lower brain by four neurohormonal systems.

Voluntary actions	<u>Differences</u>	Involuntary actions
Not Automatic - with awareness	Type of response	Automatic - without awareness
Cerebrum	Part of the brain controls the actions	Medulla oblongata
Receptor \rightarrow Spinal cord \rightarrow Cerebrum \rightarrow Spinal cord \rightarrow Effectors	Nervous pathway	Receptor → Spinal cord → Medulla oblongata → Spinal cord → Effectors
Slow	Speed	Fast
Speaking, hearing writing, walking and etc	Example of actions	Heartbeat, peristalsis respiration and etc

Functions of Brain

Involuntary Brain Functions Involuntary functions include □ Regulating heartbeat, \square breathing, blood pressure, \square swallowing, □ reflexes \square and blinking..

https://www.ncbi.nlm.nih.gov/books/NBK20367/#:~:text=For%20inst ance%2C%20the%20human%20brain,to%20each%20type%20of%20t ask.

Brain Stem

- Located at the base of the brain, the brainstem is composed of the midbrain, the pons and the medulla. It regulates basic involuntary functions necessary for survival such as:
- Breathing
- Heart rate
- Blood pressure
- Swallowing
- It also plays a role in alertness and sensation

Reticular Formation

System of motor and sensory fibres and nerve cells forming the central core of brainstem

Extends from superior part of spinal cord
 diencephalon

Definition

Diffused mass of neurons and nerve fibers forming an ill-defined reticulum (network) in the central portion of the brainstem

Connections

Connects
hypothalamus,
basal ganglia,
cerebellum and
cerebrum
with fibres in all major ascending and descending tracts

Reticular Activating System

- a component of the reticular formation located throughout the brainstem.
- modulate between slow sleep and fast sleep rhythms @
- the nuclei that form the RAS play a significant role in coordinating both the sleep-wake cycle and wakefulness.
- responsible for attention, arousal, modulation of muscle tone, and the ability to focus
 https://www.ncbi.nlm.nih.gov/books/NBK549835

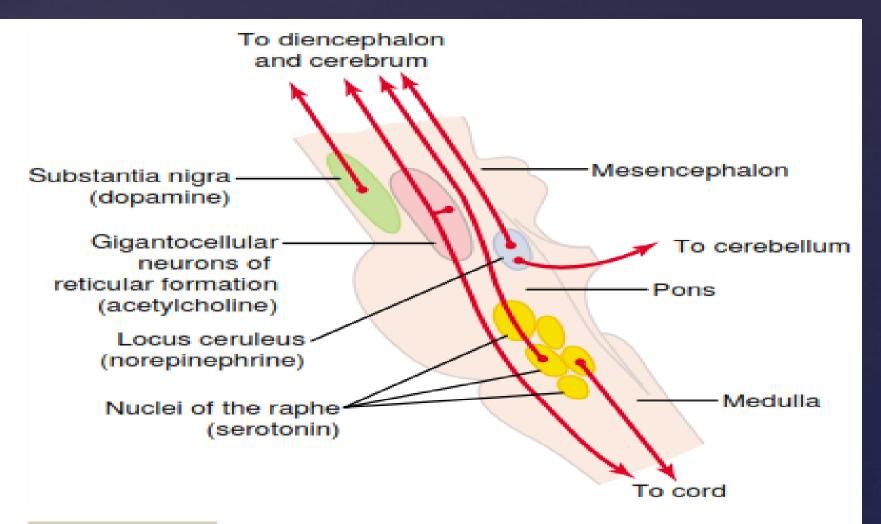
Descending Reticular System

Regulation of heart rate
Blood pressure
Respiration
Muscle tone
and control many Autonomic motor functions

Ascending Reticular System Activating influence on Cerebral Cortex

 In a sleeping animal electrical stimulation will show a typical pattern of arousal
 So

> **Reticular Activating System or Bulboreticular facilitatory Area**


Controls level of Consciousness and produces Alert State

Neurotransmitters

Neurotransmitters in Reticular Formation

(SAND)

Serotonin (Raphe Nuclei)
 Acetyl Choline (Gigantocellular Neurons)
 Noradrenaline (Locus Coeruleus) and
 Dopamine (Substantia Nigra)

Figure 58–3

Multiple centers in the brain stem, the neurons of which secrete different transmitter substances (specified in parentheses). These neurons send control signals upward into the diencephalon and cerebrum and downward into the spinal cord.

Reticular Formation

Can be roughly divided into 3 longitudinal zones

Midline - Raphe Nuclei

Medial Zone - Long ascending and descending projections

Lateral Zone - Cranial nerve nuclei

Characteristics of RAS

diffuse aggregations of cells

Magnocellular zone

Large cells in medial 2/3 serve as the effector regions (give rise to the efferent projections) and receive afferents fibers

Parvocellular zone

Small cells found laterally receive afferent fibers from both neighboring regions of the brainstem as well as from distant structures

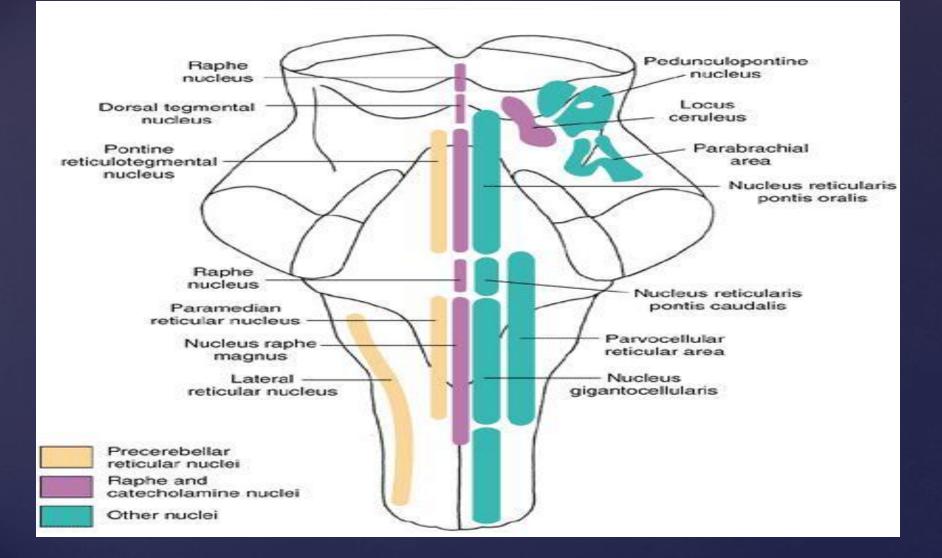
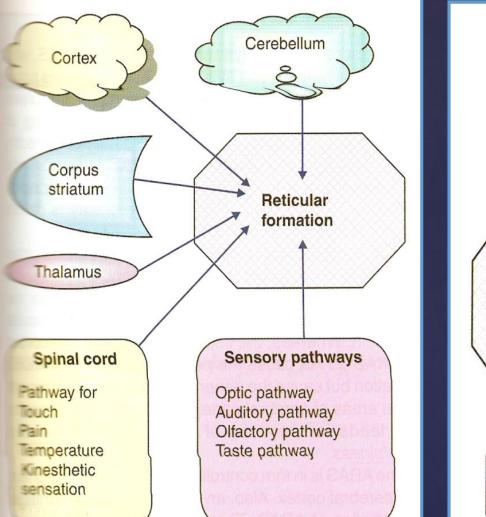



Figure. The positions of the magnocellular and parvocellular regions of the reticular formation.

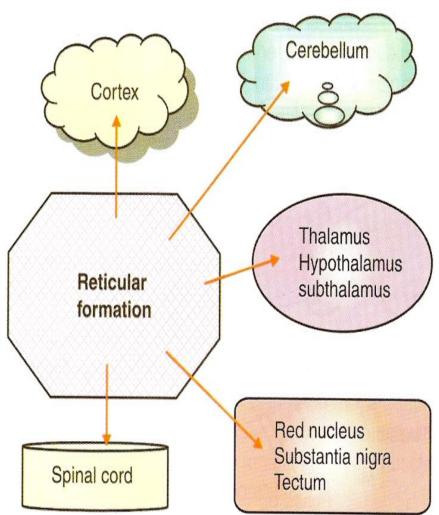


Fig. 1 - Afferent connections of reticular formation Fig. 2 – Efferent connections of reticular formation Fig. 2 – Efferent connections of reticular formation

Current Concept Reticular Formation

1. Arousal Or Alerting System For Cerebral Cortex

1. Maintaining Consciousness

Effect Of Drugs

Depression

decreases alertness and
induces sleep (Barbiturates)

Stimulates Cerebrum
alertness and wakefulness (Amphetamines)

Functions of Reticular Formation

- 1. Motor activities and some spinal reflexes
- 2. Control of respiration, blood pressure and heart rate
- 3. Activates cerebral cortex to a state of wakefulness
- 4. If stops working ^(a) unconsciousness (coma)
- 5. Filters incoming Sensory impulses
- 6. Monitors all bodily activities
- 7. Auditory and vestibular impulse from ear exerts a powerful effect along with descending part of RAS

Neurohormonal Systems Brain

1. The Locus Coeruleus And Norepinephrine System

2. The Substantia Nigra And Dopamine System

3. The Raphe Nuclei And Serotonin System

4. The Gigantocellular Neurons of Reticular Excitatory Area And Acetylcholine System

The Locus Coeruleus And Norepinephrine System

Small area between pons and mesencephalon

Nerve fibres spread from here to all areas of brain

Norepinephrine is excitatory in most areas of brain and inhibitory in some

Role in dreaming

REM sleep

The Substantia Nigra And **Dopamine** System

 Substantia nigra lies superiorly in mesencephalon
 nerve endings to putamen and caudate nucleus where they secrete Dopamine

Inhibitory in Basal Ganglia but may be excitatory in other areas of brain

The Raphe Nuclei And Serotonin System

Raphe nuclei in midline of pons and medulla

Serotonin Suppresses Pain And causes
 Sleep

The Gigantocellular Neurons And Acetylcholine System

Giant Cells in Reticular Excitatory Area of Pons And Mesencephalon

Acetylcholine is secreted at nerve endings

Mostly Excitatory Neurotransmitter

Other Neurotransmitters and Neurohormonal systems in Brain

- 🗆 Enkephalins,
- □ GABA,
- Glutamate,
- 🗆 Vasopressin,
- Adrenocorticotropic hormones,
- $\ \ \alpha$ -Melanocyte stimulating hormone (α -MSH), Neuropeptide Y (NPY),
- epinephrine, histamine, endorphins, angiotensin II and neurotensin

References

Guyton & Hall

Sherwood Physiology

Ganong's Physiology

Thank you