Community	HIV/AIDS,	1	145	Describe HIV/AIDS considering Risk groups, pathology,
Medicine	Syphilis	1		Diagnosis, treatment, and Prevention
			146	Describe Syphilis in terms of causative agent, incubation period, transmission, manifestation, diagnosis treatment and prevention.
	Chlamydia, Genital warts, Gonorrhea		147	Describe Chlamydia in terms of etiology, transmission, symptoms, treatment, and prevention.
			148	Describe Genital warts in terms of causes, transmission, symptoms, treatment, and prevention.
			149	Describe Gonorrhea in terms of causes, transmission, symptoms, treatment, and prevention.
	Human Papiloma virus,		150	Describe Human Papiloma Virus (HPV) in terms of causes, types, transmission, symptoms, screening, and prevention.

Community	Environmental health:	1	109	Explain the importance of environmental health	
medicine	Introduction		110	Define and classify environmental degradation	
	Water pollution	1	111	Define water pollution and describe its importance for health	

KMU (IHPER)- Central Curriculum Committee

		112	Describe the different types of water pollution as simple
			biodegradable, complex biodegradable and complex non-
			degradable
Water quality	y 4	113	Explain the importance and daily requirements of water.
management			
		114	Describe the qualities and criteria of different sources of
			water including surface water, ground well, shallow well,
			deep well.
		115	Classify different methods of purification of water
		116	Describe natural methods of purification of water
		117	Describe physical methods.
		118	Describe chemical methods.
		119	Describe filtration methods both small scale and large scale
		120	Describe purification of water in special circumstances
		121	Enumerate different water quality parameters
		122	Describe physical parameters
		123	Describe different chemical parameters and its interpretation.
		124	Explain the permissible limits of chemical parameters.

14

- Pleasant to taste
- Free from Pathogenic agents
- Free from harmful Chemical substances
- Free from Odor & Color
- Usable for Domestic purpose
- ❖ Water is said to be **Polluted** or **Contaminated** if it does not fulfill the above criteria
- Daily requirement of water to meet needs for Domestic purposes
 - Rural- 40 60 liter per capita / day (55 Liter / capita / day)
 - Urban- 150 200 liter per capita / day
- Physiological requirement of water
 - Adult male 3.7 liter
 - <u>12-year girl 2.1 liter</u>

Sources of Water

1. Rain water

2. Surface water

- i. Impounding reservoirs
- ii. Rivers & Streams
- iii. <u>Tanks,</u> Ponds & Lakes

3. Ground water

- i. Shallow well
- ii. Deep well
- iii. Springs

1. Rain – (Gibraltar)

- Purest source of water
- Very soft water
- Symon's rain gauge widely used in India

- 2. Surface water (Mumbai, Chennai, Nagpur)
 - i. Impounding reservoirs
 - Artificial lakes
 - Next to rain water in purity
 - Catchment area areas from which water is drained to these reservoirs
 - ii. Rivers & Streams (Delhi, Kolkata, Allahabad)
 - Grossly polluted water, so without treatment it is unfit for drinking
 - iii. <u>Tanks,</u> Ponds & Lakes

Water Pollution – caused by different kinds of Water impurities

- 1. Natural impurities- Comprises of
 - i. Dissolved gasses Nitrogen, Carbon dioxide, Hydrogen sulphide
 - ii. Dissolved minerals salts of Calcium, Magnesium, Sodium
 - iii. Suspended impurities Clay, Silt, Sand & Mud
 - iv. Microscopic organisms
- 2. Water pollution caused by human activities
 - i. Urbanization & Industrialization
 - ii. Sewage Contain Organic matter & Pathogenic agents
 - iii. Industrial waste Contains toxic agents like Metal salts
 - Most common cause of pollution of drinking water
 - iv. Agricultural pollutants Fertilizers & Pesticides
 - v. Physical pollutants Heat & Radioactive substances

- Indicators of Water pollution
 - i. Total Suspended Solids (TSS)
 - ii. Biochemical Oxygen Demand (BOD)
 - iii. Concentration of Chlorides, Nitrogen & Phosphorus

- Water Pollution Law
 - o Water (Prevention & Control of pollution) Act 1974

PREVENTION AND CONTROL OF WATER POLLUTION

Sanitary Well

 one that is Properly located, Well-constructed, and Well protected from possible locations of contamination, so as to ensure supply of safe water

Points kept into consideration before building Sanitary Well

- 1. Location
- 2. Lining / Stone wall
- 3. Parapet wall
- 4. Platform
- 5. Drain
- 6. Covering
- 7. Hand Pump

1. Location

- 100 m / 300 ft distance from Human dwelling
- 15 m / 50 feet from likely Source of contamination
- · Should be located at a higher elevation

2. Lining / Stone wall

- Built of bricks or stones set in cement upto
 - a Depth of at least 6 m / 20 feet
- Lining should be carried 1 m / 3 feet
 above the ground

3. Parapet wall

• Up to height of at least 70 - 75 cm / 28 inches above the ground

4. Platform

- At least 1 m / 3 feet in all direction
- Gentle slope outwards towards a drain

5. Drain

Pucca drain to carry off spilled water
 to a public drain

5 - Sanitary Well

platform

6. Covering

• Top of the well should be closed by a cement concrete Cover

7. Hand Pump

 Well should be equipped with Hand pump for lifting the water in a sanitary manner

• • •

7 - Diseases of Water

Diseases of Water

- 1. Water Borne diseases
 - i. Viral
 - ii. Bacterial
 - iii. Protozoal
 - iv. Helminthic
 - v. Leptospiral
- 2. Water Washed diseases
- 3. Water Based diseases
- 4. <u>Water Related diseases</u> (Water Breeding Disease)
- 5. Others
 - Heavy metals, Dyes, Bleaching agents, Solvents etc.
 - Fluoride
 - Hardness of water

1. Water Borne diseases

- Occur due to drinking contaminated water
- Transmitted by Faeco Oral route
- Example
 - i. Viral- Hepatitis A & E
 - ii. Bacterial- <u>Typhoid</u> & Paratyphoid fever, <u>Cholera</u>
 - iii. Protozoal- Amoebiasis, Giardiasis
 - iv. Helminthic Roundworm, Threadworm
 - v. Leptospiral Weil's disease

2. Water Washed diseases

- Infection of outer body surface due to improper hygiene & inadequate use of water
- Example- <u>Scabies, Trachoma</u>, Typhus, <u>Conjunctivitis</u>, <u>Shigellosis</u> etc.

[w.**A.**t.**E.**r]

3. Water Based diseases

- Infection transmitted through an Aquatic invertebrate
- Example- Shistosomiasis, Dracunculiasis (Guinea worm disease)

4. Water Related diseases (Water Breeding Disease)

- Infections spread by insects that depends on water
- Example- Malaria, Filariasis, Dengue, Yellow fever, Onchocerciasis etc.

5. Others

- Heavy metals, Dyes, Bleaching agents, Solvents etc.
- Fluoride 1mg/L Protect against Dental Caries but high-level cause mottling of Dental Enamel
- Hardness of water is beneficial against CVD

8 - Purification of Water

Purification of Water

- I. Purification of water on Large Scale
 - 1. Storage
 - 2. Filtration
 - 3. Disinfection
- II. Purification of water on Small Scale
 - 1. Household purification of water
 - 2. Disinfection of Well

. Purification of water on Large Scale

- 1. Storage
 - i. Physical 90% of the suspended impurities settle down by gravity
 - ii. Chemical Aerobic bacteria oxidizes organic matter, which reduces free Ammonia into Nitrates
 - iii. Biological when river water is stored properly, bacteria count drops 90% in first 5 -7 days
- 2. Filtration 99% bacteria are removed, apart from other impurities
 - i. Slow Sand filter or Biological Filters
 - ii. Rapid Sand filter or Mechanical Filters
- 3. Disinfection
 - i. Chlorination
 - ii. Ozonation
 - iii. Membrane process
 - a. High pressure process
 - I. Reverse Osmosis
 - II. Nanofiltration
 - b. Low pressure process
 - I. Ultrafiltration
 - II. Microfiltration

II. Purification of water on Small Scale

- 1. Household purification of water
 - i. Boiling
 - ii. Chemical disinfection
 - a. Bleaching powder / Chlorinated lime / CaCl₂
 - b. Chlorine solution,
 - c. High Test Hypochlorite (H.T.H) (Perchloron)
 - d. Chlorine tablet (Halazone)
 - e. lodine
 - f. Potassium Permanganate

iii. Filtration (Ceramic filters)

- a. Pasteur Chamberland filter
- b. Berkefeld filter
- c. Katadyn filter
- a. Ultraviolet Filtration
- i. Multistage Reverse Osmosis
- 2. Disinfection of Well
 - Double Pot Method

8.1 - Slow Sand Filter

Slow Sand Filter / Biological Filter

- 1. Supernatant (Raw) Water
- 2. Sand Bed
- 3. Under Drainage System
- 4. Filter Controls

1. Supernatant (Raw) Water

Depth - 1.5 m

Provides constant head of water to promote downward flow of water

• Also provides waiting period of 3 - 12 hours which helps to undergo purification by sedimentation & oxidation

2. Sand Bed

- Thickness 1 m
- Sand grains diameter 0.3 mm
- Supported by layer of graded gravel
- Rate of filtration- 0.1- 0.4 m³/hour/per square meter

of sand bed surface

- Vital Layer Surface of filter get covered with a slimy growth known as <u>Schmutzdecke</u>/ Vital/ <u>Zoogleal</u>/ Biological Layer
 - Extends 3 cm into the top portion of sand bed.
 - Slimy gelatinous layer <u>consist of thread like Algae, Bacteria, Planktons & Diatoms</u>

[All Backup Plans Die]

- Heart of slow sand filter Filtered water can be used only after formation of vital layer (k/a Ripening of the filter)
- Removes organic matter & oxidizes ammoniacal nitrogen into nitrates

3. Under Drainage System

Perforated pipes which provides an outlet for filtered water & supporting the filter from below

4. Filter Controls

• Equipped with valves & devices, to maintain a constant rate of filtration

❖ Venturi-Meter

• measure's sand bed Resistance / Loss of head (When exceeds 1.3 m, it is uneconomical to run the filter)

Filter Cleaning

- Supernatant water is cleaned off
- Sand bed is cleaned by scrapping off the top portion to the depth of 2 cm
- After 20 30 scrapping, plant is closed down & new bed is constructed

Advantages

- Simple & Cheap to construct
- Physical, chemical & biological quality of filtered water is very high
- Removes total bacteria count by 99.9%

8.2 - Rapid Sand Filter / Mechanical Filter

Rapid Sand Filter / Mechanical Filter

- 2 types
 - 1. Gravity type (Paterson's filter)
 - 2. Pressure type (Candy's filter)
- Steps
 - 1. Coagulation
 - 2. Rapid mixing
 - 3. Flocculation
 - 4. Sedimentation
 - 5. Filtration

[General Practioner Practi-Ces]

Steps

1. Coagulation

- Raw water treated with alum
- 5 mg / Liter

2. Rapid mixing

Violent agitation in a mixing chamber

3. Flocculation

- Slow & gentle stirring of treated water in flocculation chamber for 30 min
- Results in formation of thick, copious, white flocculent precipitate of Aluminum Hydroxide

4. Sedimentation

- 6 hours
- Flocculent precipitate along with impurities & bacteria, settles down

5. Filtration

Partly clarified water is now subjected to rapid sand filtration

Filter bed - Sand, Gravel, Perforated pipes

Alum floc not removed by sedimentation is held back on the sand bed & forms a slimy layer which absorbs bacteria & oxidizes ammonia

· Rate of filtration

- 5 m³/ m²/hour
- When the loss of head approaches 7 8 feet, filtration is stopped & filters are subjected to backwashing
- Filter cleaning Backwashing
 - Reversing the flow of water
 - · Sometimes air is used
- Advantages
 - Occupy less space
 - Filtration is rapid
 - Washing is easy

alum floc

Pergnated Pipe

Filter Bed Filteration

	Rapid Sand Filter (Mechanical Filter)	Slow Sand Filter (<u>Biological Filter</u>)
1. Space	Occupy little space	Occupy large area
2. Rate of filtration	5 m³/hour/per square meter	0.1- 0.4 m³/hour/per square meter
3. Size of sand	<u>0.4 – 0.7 mm</u>	<u>0.2 – 0.3 mm</u>
4. Preliminary treatment	Chemical Coagulation & Sedimentation (i.e., storage)	Plain sedimentation
5. Washing	 Backwashing Requires frequent washing Requires highly skilled workers 	 Scrapping Does NOT require frequent washing Requires less skilled workers
6. Loss of head allowed	6 – 8 feet	4 feet
7. Removal of bacteria	<u>98 – 99 %</u>	<u>99.9 – 99.99 %</u>
8. Suitable for	Big cities	Small cities
9. Construction cost	<u>Expensive</u>	<u>Cheap</u>
10. Layer is made of	Aluminum Hydroxide	Algae, Bacteria, Planktons & Diatoms 64

8.4 - Chlorination

Chlorination

- Bactericidal & moderately Virucidal but NOT sporicidal
 - Polio virus NOT sensitive to disinfection by chlorination
- Used for purification of highly polluted water on large scale

Action of Chlorine

- Hydrochloric acid is neutralized by alkalinity of water
- Disinfection action of chlorine is mainly due to Hypochlorous acid & to a small extent due to Hypochlorite ion
- Chlorine disinfects best when pH of water is 7
 - When pH exceeds 8.5 chlorine is unreliable as a disinfectant because 90% of Hypochlorous acid gets ionized to Hydrogen & Hypochlorite ions (most water have pH between 6-7.5)
- Most effective water treatment method in rural areas is chlorination of water

• Phases of Chlorination

Phase I	Formation of chloramines
Phase II	Destruction of chloramines
Phase III	Appearance of breakpoint
Phase IV	Accumulation of residual chlorine

- Chlorine gas
- Chloramine
- Perchloron / High Test Hypochlorite (HTH)

Chlorine demand

- Amount of chlorine needed to destroy bacteria &

 to oxidize all organic matter & ammoniacal substances
- Chlorine demand is the difference between amount of chlorine added to water & amount of residual chlorine remaining at the end of specific period of contact (usually 60 min) at given temperature & pH of water

Break point

Point at which chlorine demand of water is met &
 if further chlorine is added beyond the break point,
 free residual chlorine (HOCI) begins to appear in water

Contact period

Presence of free residual chlorine for a period of <u>at least 1 hour</u>
 is essential to kill bacteria & viruses

Free Residual Chlorine

Recommended level of Free Residual Chlorine in water (<u>1mg / L = 1ppm</u>)

<u>Drinking water</u>		> 0.5mg / L (after 1 hour)
Post disaster water bodies		> 0.7 mg / L
Swimming pool		> 1 mg / L
Post epidemic	Piped supply	0.5 mg / L
	Wells	1mg / L
	Tankers	2mg / L

· Residual germicidal effect of chlorine

- Provides margin of safety against microbial contamination, which may occur during storage or distribution
- Only chlorine has got the residual germicidal effect whereas UV radiation & Ozone gas DON'T have residual germicidal effect

Breakpoint Chlorination

- Addition of chlorine to water produces chloramines
- if chlorine dose is increased, a reduction in residual chlorine occurs, d/t destruction of Chloramine by added chlorine.
- This causes fall in residual chlorine with further increase in chlorine dose & after a stage, residual chlorine begins to increase in proportion to the added dose of chlorine.
- This point at which the residual chlorine appears & when combined chlorine is completely destroyed is breakpoint & dosage is breakpoint dosage

Super Chlorination

- Super chlorination is followed up with dechlorination
- It is the addition of large doses of chlorine to the water & removal of excess of chlorine after disinfection
- This method is <u>applicable to heavily polluted waters on large scale</u>

1. Horrock's apparatus - chlorine demand estimation

2. Chlorinator / Chloramine - mixing of chlorine

3. Chloroscope - measuring residual chlorine

Tests for Free Residual Chlorine

1. Orthotolidine test (OT)

- Determines both Free & Combined chlorine in water
- 0.1 ml reagent (Orthotolidine in 10% HCl) is added to 1 ml of water containing chlorine
- It turns yellow, whose color is matched against a colored disc
- OT reacts with free chlorine instantaneously but more slowly with combined chlorine
 - So, it's essential to take reading within 10 seconds to estimate free chlorine because color produced after 15-20 minutes is due to the action of both free & combined chlorine

2. Orthotolidine Arsenite test (OTA)

- For Free & Combined Chlorine separately
- Errors caused by presence of Nitrites, Iron & Manganese

(as they also give yellow color) are overcome

8.5 - Ozonation

Ozonation

- Ozone gas O₃ is formed by passing dry air or oxygen through a high voltage electric field
 - Resultant ozone-enriched air is dosed directly into water
- A residual of about 0.5ml/L after a contact time of upto 20 min is typically used
- Normally used with subsequent treatments such as Biological Filtration
 or Granular Activated Carbon (GAC), to remove biodegradable organics
 - Ozone reacts with natural organics to increase their biodegradability
 - Effective for degradation of wide range of pesticides
- Virucidal & Bactericidal
- Removes Odor, Taste & Color
- No residual effect

8.6 - Membrane Process

Membrane process

- a. High pressure process
 - I. Reverse Osmosis (RO)
 - II. Nanofiltration
- a. Lower pressure process
 - I. Ultrafiltration
 - II. Microfiltration

a. High pressure process

I. Reverse Osmosis (RO)

- Force the flow of solvent in opposite direction from the
 higher to the lower concentration, by increasing the pressure
 on the higher concentration solution
- Pressure 15 50 bar
- Rejects monovalent ions & organics of molecular weight > 50 Daltons
- Most common application desalination of sea water

Osmosis And Reverse Osmosis

How Nanofiltration Works

II. Nanofiltration

- Uses membrane with properties between RO & Ultrafiltration
- Pressure 5 bar
- Rejects divalent ions (Ca, Mg) & higher molecular weight organics
- Effective for removal of color forming organic compounds

a. High pressure process

I. Reverse Osmosis (RO)

- Force the flow of solvent in opposite direction from the
 higher to the lower concentration, by increasing the pressure
 on the higher concentration solution
- Pressure 15 50 bar
- Rejects monovalent ions & organics of molecular weight > 50 Daltons
- Most common application desalination of sea water

Microfiltration Ultrafiltration Reverse Osmosis E. coli Viruses Proteins Small Compounds Colloids Suspended Particles

Osmosis And Reverse Osmosis

Household purification of water

Household purification of water

- 1. Boiling
- 2. Chemical disinfection
 - i. Bleaching powder/ Chlorinated lime/ CaOCl2
 - ii. Chlorine solution
 - iii. High Test Hypochlorite HTH (Perchloron)
 - iv. Chlorine tablets
 - v. lodine
 - vi. Potassium permanganate
- 3. Filtration
 - i. Chamberland filter
 - ii. Berkefeld filter
 - iii. Katadyn filter
- 4. Ultraviolet filtration
- 5. Multi stage Reverse Osmosis

1. Boiling

- Water must be brought to a rolling boil for 10 to 20 minutes
- Kills all bacteria, spores, cysts & ova
- Also removes temporary hardness
- Water should be boiled preferable in the same container in which it is to be stored

2. Chemical disinfection

- i. Bleaching powder/ Chlorinated lime/ CaOCl2
 - Bleaching powder is widely used in disinfection of wells
 - · Contains 33% of available chlorine
 - . When mixed with excess of lime it retains its strength, this is called Stabilized Bleach

ii. Chlorine solution

- · 4 kg bleaching powder mixed with 20 liters of water
- · Gives a 5% solution of chlorine

iii. High Test Hypochlorite - HTH (Perchloron)

· Contains 60% of available chlorine

iv. Chlorine tablets

- · Halazone tablets
- Single tablet of 0.5 gm is sufficient to disinfect 20 liters of water

v. lodine

- · 2 drops of 2% ethanol solution of iodine will suffice for 1 liter of clear water
- High cost & thyroid activity are its major disadvantages

vi. Potassium permanganate

· Powerful oxidizing agent, but not a satisfactory agent for disinfecting water

3. Filtration

Ceramic filters NOT used much in India

i. Chamberland filter

· Candle made up of Porcelain

ii. Berkefeld filter

· Candle made up of Infusorial Earth or Kieselguhr

iii. <u>Katadyn filter</u>

Surface of filter is coated with <u>silver catalyst</u> so that bacteria are killed by <u>oligodynamic action</u>
 <u>of silver ions</u>

4. <u>Ultraviolet filtration</u>

Involves exposure of film of water 120 mm thick to mercury vapor arc lamp, emitting ultraviolet radiation at wavelength of
 254 nanometer

NO residual effect

5. Multi stage Reverse Osmosis

Clarity cartridge - removes suspended particles

RO cartridge - reduces TDS, hardness, heavy metals & eliminate microorganisms

8.8 - Disinfection of Well

Disinfection of Well

Steps of disinfection of well

- 1. Find volume of water in a well
- 2. Find the amount of bleaching powder
- 3. Dissolve bleaching powder in water
- 4. Delivery of chlorine solution into the well
- 5. Contact period
- 6. Orthotolidine Arsenite test

1. Find volume of water in a well

Volume =
$$\pi R^2 H \text{ (in m}^3\text{)}$$

• 1 m³ = 1000 litres

2. Find the amount of bleaching powder

• Estimate the **chlorine demand** of well water by **Horrock's Apparatus** & calculate the amount of bleaching powder required to disinfect the well

Horrock's Apparatus

- Estimates chlorine demand of water
- Content- 6 white cups (200ml), 1 black cup, 2 metal spoons, 7 glass stirring rods
- Indicator- starch iodide (produce blue color)
 - Here development of blue color indicates the presence of residual chlorine

Chlorine demand (dose of bleaching powder required) = n x 2 gm to disinfect 455 litres of water

(n - number of the 1st cup which shows blue color change)

3. Dissolve bleaching powder in water

- Required amount of bleaching powder is kept in a bucket
- Water is added to make a thin paste
- More water is added to fill ¾ of bucket
- Contents are stirred & allowed to sediment.
- When lime settles down, the Supernatant Solution viz. chlorine solution is transferred to another bucket & lime is discarded

4. Delivery of chlorine solution into the well

 Bucket containing chlorine solution is lowered below the water surface & well water is agitated by moving bucket vertically & horizontally

5. Contact period

• Contact period of 1 hour is allowed before the water is drawn for use

5. Orthotolidine Arsenite test

To test for free residual chlorine at the end of 1 hour contact, which should be 0.5mg/L

8- Hardness of Water

Hardness of Water

Definition - Soap destroying power of water

Classification

[CAR wali Temporary, NON-CAR wali Permanent]

- 1. Carbonate hardness
 - Temporary hardness
 - Due to presence of Calcium & Magnesium Bicarbonates

2. Non-carbonate hardness

- Permanent hardness
- Due to presence of Calcium & Magnesium Sulphates, Chlorides & Nitrates

Unit

- Expressed in terms of m Eq/ L (mili equivalent per litre)
- \circ 1 mEq / L = 50 mg CaCO₃ in 1 litre of water

Classification of Hardness in water

Classification	Level of Hardness (mEq / L)	Level of Hardness (mg / L)
1. Soft water	<u><1</u>	<u>< 50</u>
2. Moderately hard water	<u>1 - 3</u>	50 – 150
(Drinking water should be moderately hard)	(Softening of water is recommended at hardness > 3 mEq / L or 150mg/L)	10-es
3. Hard water	3 - 6	150 - 300
4. Very hard water	> 6	> 300

Advantages

o There is an inverse association between hardness of drinking water & Cardiovascular disease

Disadvantages

- o **Consumes more soap** & detergents
- Scaling of boilers
- Shortens life of Fabrics & <u>supply pipes (by erosion)</u>

- 1. Temporary hardness removed by
 - i. Boiling
 - ii. Addition of Lime
 - iii. Addition of Sodium Bicarbonate
 - iv. Base exchange process / Permutit process
- 2. Permanent hardness removed by
 - i. Addition of Sodium Bicarbonate
 - ii. Base exchange process / Permutit process

Boiling

Precipitates the insoluble calcium carbonate

$$Ca(HCO_3)_2 \rightarrow CaCO_3 + H_2O + CO_2$$

· Addition of Lime

Lime absorbs carbon dioxide & precipitates the insoluble calcium carbonate

$$Ca(OH)_2 + Ca(HCO)_3 \rightarrow 2CaCO_3 + 2H_2O$$

Clarke's method - 1 ounce of lime added to 700 gallons of water for each degree of hardness

[hard cLarke - L - 7 - 700]

· Addition of Sodium Bicarbonate

Sodium bicarbonate (soda ash) removes both temporary & permanent hardness

$$Na_2CO_3 + Ca(HCO_3)_2 \rightarrow 2NaHCO_3 + CaCO_3$$

$$Na_2CO_3 + CaSO_4 \rightarrow CaCO_3 + Na_2SO_4$$

- Base Exchange Process / Permutit Process
 - Sodium Permutit a complex compound of <u>Sodium, Aluminum & Silica</u> (Na₂ Al₂ Si₂O H₂O) has the property of exchanging sodium cation for calcium & magnesium ions
 - By this process water can be softened to zero hardness
 - Water with zero hardness is corrosive so
 a part of raw water is mixed to secure desired hardness

